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PREFACE

This paper presents the results of one phase of studies conducted
during the period March 3, 1967 - February 1, 1968, under NASA research
contract NSR-05-003-189, '"Materials Studies Related to Lunar Surface

Exploration,"

with the University of California, Berkeley, California.
This research effort is sponsored by the Lunar Exploration Office,
NASA Headquarters, and is monitored by the Space Sciences Laboratory,

George C. Marshall Space Flight Center.



LUNAR STRATIGRAPHY AS REVEALED BY CRATER MORPHOLOGY

I. INTRODUCTION

1. The stratigraphy of the moon's surface has been under investigation for
a number of years and the consensus is that, over the maria, a fragmental layer
of fine grained material overlays a hard base composed of one or several layers
of possible volcanic origin. However, it is not until very recently (1966) that the
first conclusive attempts were made to determine the extent and the thickness of
this surficial layer.

Many scientific and engineering justifications can be proposed to such an
effort. The selenological history will be uncovered in part through a detailed
analysis of lunar formationsll* and of the erosional processes active on the moon.
The bearing of stratigraphy studies on the engineering aspects of lunar exploration
has many aspects:

(a) The trafficability of planned traverses depends upon terrain rough-

ness and profile and soil properties but, also, upon the depth of a "soft"

surficial layer.

(b) The efficiency and depth of planned borings for sampling or testing
purposes can then be optimized in terms of power requirements and ade-

quate drilling tools.

(c) Analysis of foundations settlements for major structures (nuclear

plants, observatories, etc.) requires a knowledge of vertical soil/rock profile.

* Numbers refer to the list of publications appended to this report and summarized
in Table I.



(@) Excavations and cut-and-cover operations for foundations and
thermal or radiation shielding will also be best achieved through a
prior answer to the questions: what kind of material is available?
and how much of it can actually be used?

2. Earlier studies!’2:3

concerned themselves with the morphology of lunar
craters in order to determine their origin. A scaling law1 was proposed relating

crater depth (d) and diameter (D):
D = 0.025d° + d + 0.630

This relationship was applicable to man made impact craters and to the small
lunar craters (D less than a few kilometers). Thus a first evidence of the
impact origin of some lunar craters was presented. Large craters on the moon

were recog;nized2 as not being of impact origin but rather of volcanic origin.

3. Salisbury and Smalley22 (1963) then reviewed uirect and indirect evidence
for the nature, origin, and geometry (depth and extent) of the lunar surface materials.

They presented their conclusions as to the nature as follows:

Measurement Conclusion
Infrared Emission Low thermal conductivity
Radio Emission Low thermal conductivity
Radar Reflection Low density. Surface gradient 1 in1lona
meter and 10 cm scale
Polarization Agglomerated powder composed of opaque grains
Photometry Highly porous, complex and irregular surface.

Relief many times the wavelength of light

Albedo and Color Non-terrestrial reflectivity

The mechanisms cited for producing a fragmental layer were: meteorid impact,
micrometeorid infall, radiation, internal seismic shock, volcanism, and thermal
fracture. The pulverizing effect of meteorid impacts was retained as being by far

the most important of thesc mechanisms.




Besides considerations of entrapment of meteoridal debris and electro-
static transport, their major conclusions were concerned with roughness and
depth of the blanket. The size of blocks ejected from craters, a trafficability
constraint, was established from terrestrial analogs to be related to the volume
of craters they originated from. Typical block sizes would be 4.5 m around craters
100 m in diameter and 16 m around craters with D = 1 km if no secondary frag-
mentation occurs. Average depth estimates were obtained for maria and highlands
based upon frequency and volume of primary craters. These and other conclusions

are presented in Table I.

4. However good these estimates proved to be in the light of later investigations,
they could not be used as such for detailed planning of missions at specific sites.
With the advent of the first spacecrafts and the availability of higher resolution

4,5,6,7 were made to estimate

photographs of the moon (Rangers), further studies
the depth of unconsolidated materials resting on a harder base on the lunar surface.
They were followed as resolution still improved (Orbiters and Surveyors) by the

development of new techniques based upon direct observationss_lo’ 12-15 or

modelingle’ 18-21

II. DETERMINATION OF SURFICIAL LAYER THICKNESS

Four techniques can be recognized among the latest attempts to analyze

surficial lunar stratigraphy.

1. Comparative Study of Rangers Photographs - Laboratory Simulation of
Overlay Deposition

Observing Ranger VII photographs, Jaffe* noted the "soft" appearance of
some lunar craters and inferred that this was attributable to an overlay of dust or

other granular material deposited after crater formation.



The erosional and depositional processes which affect the relatively small
lunar craters are lunar "dusting' and downslopc movement. Lunar dusting refers
to the process by which fragments produced by primary and secondary impacts
rain down onto the lunar surface. If the assumption is made that meteorite impact
on the lunar surface takes place in a random manner, then it follows that a lunar
dust blanket of uniform thickness would result if the fragments were deposited on
an even surface. The term downslope movement can be used to include three
different types of erosional processes. One type consists of the slumping of the
walls of the crater. Another type of downslope movement occurs when the frag-
ments produced by meteorite impacts elsewhere rain down onto the crater wall
and bounce down the slope. A downslope movement associated with this latter
type occurs when fragments which hit the crater wall induce the particles

composing the wall to also move down the slope4’2l.

If the assumption is made
that the slumping process is not important in changing the morphology of small
craters, then the lunar dusting process is seen to be the most influential.

To obtain an experimental relation from which to determine the depths of
overlay on lunar craters, a number of dusting experiments were performed. They
consisted of reproducing in the laboratory three types of craters. Two of them
were made by impressing the surfaces of flattened spheres into dry silica sand,
and the third was made to be somewhat flat-bottomed with conical sides produced
by slumping. The criterion for choosing these particular shapes was that they
showed similarity to those appearing on some Ranger VII photographs. Once a
crater had been impressed into the sand, it was sprinkled with sand. Measure-
ments of the depth of overlay at a number of places on its surface were made.

Pictures of the experiments were then matched with those taken of lunar
craters by Ranger VII, and measurements in the laboratory were scaled up to what
hopefully was the depth of the overlaying materials on the lunar surface. Jaffe
concluded that at the sites of Ranger VII photographs, the depth of overlay was
at least five meters, and possibly much more. The technique was refined and
applied to Ranger VI and Ranger VIOI and 1x8 photographs giving results con-

sistent with those of tue first study .




Objections have been raised7 against such a procedure; namely the
insufficient considerations of crater age, of all possible erosional processes
(including impacts), and the apparent dependency of the results on crater
diameter for small craters (D < 30 m). However, the main shortcoming of the
technique remains the fact that only a lower hound of layer thickness is pro-
vided. If cannot be assumed that the layer existing prior to impact has
significantly different properties than the one depositied after impact.

"Upper bound' techniques had then to be developed.

2. Direct Study of Orbiters and Surveyors Photographs - Block Fields,
Terraces, and Outcrops

Further improvement of photographic resolution was achieved by the

Orbiter spacecrafts missionss’g’ 10.

Two direct techniques were then used by
the ILunar Orbiter Photo Data Screening Group to analyze the lunar surface
stratigraphy.

Wherever well developed annular terraces or prominent layers can be
recognized on crater walls, direct measurements of the thickness of each layer
can be achieved knowing the slope angle of the walls. This can
usually be done for medium size craters (100 to several hundred meters), where
the upper part of the walls is not covered by debris. In the presence of smaller
craters one might thus look for the presence or absence of boulder fields inside
and outside the crater. These boulders are assumed to originate from the hard
substratum by fragmentation upon meteoritic impact. Accordingly, for a particular
area of the lunar surface, the depth of the smallest crater or craters with blocky
rim or floor is assumed to be the thickness of the surficial unconsolidated layer.
Indeed, a scarcity of block fields, a subdued crater appearance, and/or the

absence of outcrops are indicative of fairly deep fragmental layer. These techniques

applied to a variety of sites (see Table I) gave very consistent results.



Successful Surveyors and Lunas missionslz-16 provided the highest
resolution photographs. Their interpretation for stratigraphy determination also
relied upon observations of block fields, and their results agree with those of
Orbiter photograph studies (see Table I).

Besides thickness estimates, these studies resulted in some major

conclusions which can be summarized as follows.

Young or fresh cra’cers9 will provide most of the needed
information.

The impact origin of small and medium size craters is hypo-
thesized from the following observations: lunar crater size-frequency
distribution13 is similar to the one of experimental impact craters, and
block size distribu‘cion9 around lunar craters is similar to the one around

explosion craters (i.e. Danny Boy).

The fragmental lunar surface layer is very weakly cohesive since
the impact craters observed have raised rims which would not exist in a
cohesive materialsle. This obviously corroborates the Surveyors soil
experiments and extends their results to greater depths. However, the

cohesion is thought to increase somewhat with depthg.

It is to be mentioned that a drainage origin into subsurface fissures has also
been proposed for a few small craters14’ 15.

The technique presented here appears the most reliable for it does not in-
volve any correlation or scaling. However, impact cratering experiments (Gault,
Quaide, and Oberbeck 1966,1967) have suggested still another method of analysis

whose application was attempged on a large scale.




3. Comparative Study of Orbiter Photographs - Impact Crater Morphology

a. The Technique

Quaide and Oberbeck18 presented the basis for their studies as follows.
'""In laboratory cratering studies inspired by the Ranger photographs, Gault, et al.,

1966, observed that impacts against :zrgets of fragmental materials overlying a

rock substrate could produce craters with a peculiar concentric or terraced structure.

They found that craters with norme! spherical segment or conical geometry developed
when the fragmental materials were of such thickness that the rock substrate did
not interfere with crater growth. Examination of Orbiter I photographs revealed
that numerous craters with concentric geometry are present on the lunar surface,
and that they might be used to estimate the thickness of the fragmental surface
layer. Careful study of selected photographs revealed further that all fresh craters
with diameters less than a few hundred meters can be structurally classified and
that the crater structure is size dependent. This prompted an investigation of the
conditions of formation of all crater structures arising through impact against a
target consisting of fragmental materials resting on a cohesive substrate. These
studies show that all the morphologic classes recognized can be produced by
impact if the thickness of a fragmental surface layer resting on a cohesive substrate
is varied."

The application of this procedure was restricted to craters with a diameter
D < 500 m giving the stratigraphy to a depth of about 50 m. In view of the possible
engineering applications mentioned above, this is a satisfactory depth limit. The
study was also restricted to "fresh" craters defined as those with sharp appearance
if D < 70 m or those surrounded by light rays or halos if D > 70 m for Orbiter I
medium resolution photographs. This boundary will change if the photographic

resolution changes.




Threels, then four20, morphologic classes were thus recognized to which

an R value bracket was assigned for impact tests with R being defined as
R = D,/t or D/t

where

Dor D A T apparent crater diameter (rim to rim)

t surficial layer thickness

The four classes can be approximately presented here as*

normal craters : R < 4

flat bottom craters : 4 <R < 17.5

central mound craters : 4 <R < 7.5 (maximum mound height fro R =6)
concentric craters : R > 7.5

Identifying the crater type and measuring D, one can thus compute t.
Latest refinements in the correlation20 include the effect of such variables as
impact velocity, angle of impact, projectile properties, angle of repose of sur-
ficial debris, strength of substrate, and gravity. The substrate strength has a
non neglible effect on R. A new parameter DF/ Dy (where D = diameter of the
floor of the surficial crater in flat bottom and concentric craters) is also introduced
and found to be subject to boundaries for each crater class. Application of this
technique to selected Orbiter photographed sites givesresults very similar to those
obtained by the Orbiter Screening Group (see Table 1).

Other major conclusions of these studies can be summarized as follows.

A new weight of evidence has been produced in favor of the impact
origin of small lunar craters.

The surficial layer is a slightly cohesive fine grained aggregate

P . . o
with in situ angle of reposc from 33 to 35,

*
See Ref. 18 and 20 for detailed prescntation of R boundaries.
8




Some past volcanic activity is exhibited under the form of terrace

levels of flow layers.

Rock, not permafrost, is exposed on terraces in crater walls.

b . Objections to the Validity of the Technique

Whatever good agreement with other determinations was obtained by this
method, it has been found inapplicable by some investigators. Moorelo
(Orbiter V-8 site) states, "Attempts to calculate the thickness of the soil-like
layer using the method and data of Oberbeck and Quaide(ls) (1967) indicate that
the computed thickness is unfortunately a function of crater diameter and not any
given thickness of a soil-like layer". Harbour19 (Orbiter III P-12 site) also
comments, "Using moderate resolution photographs Quaide and Oberbeck (1967)
estimated the thickness of the regolith in this area as 5 to 15 meters by noting
the morphology of fresh craters less than 40 m in diameter. However craters
much smaller than those they observed possess the same morphologic features... .
The variety of morphology of fresh craters in this area and the variety in size
of craters of similar morphology indicates the size and morphology relationships
cannot be applied in any simple way to determine depth of the lunar regolith."

Five conclusions concerning the relationship between crater morphology

and size are then possible according to Harbour.

1. Multiple layers may occur in the area and may affect the morphology

of craters bottoming near their upper boundary.

2. Crater morphology may be governed more by velocity and density

of the projectile than by layering of the target material.
3. The thickness of the regolith may vary within short distances.
4. Cohesion of mare material may vary within short lateral distances.

5. The regolith varies both in thickness and properties.



¢. Discussion

Latest studies by Quaide and Oberbeckzo (1968) seem to exclude alternative 2,
the effects of projectile properties having been analyzed and found to be minimal.
Alternative 1 would apply to the layers of consolidated igneous rocks deposited upon
successive volcanic floodings. The minimum depth of rubble/soil cover above
them is an average 10 meters. Alternatives 3, 4, and 5 can apply to this layer. At
a given site, the erosion-deposition processes due to impact will give it a complex
structure22 owing to the wide variation in the size of craters formed through the
ages and the intricate overlapping of their ejecta. Each crater, however small,
might then reflect this non homogeneity and increase in bearing capacity which is

known to start at the very surface of the blanket (Surveyor experimentslz’ 13, 14) .

4. Use of a Mathematical Model (Time-Dependent Lunar Crater Rim-Erosion
and Floor-Deposition)

Meteoritic bombardment being taken as the primary source of erosion
on the lunar surface, a simplified mathematical model for time dependent erosion

21. The model takes into consideration the

of lunar craters was presented by Ross
angular distribution of impacting meteorites and ejecta and the topography and
mechanical properties of the lunar surface. Calculations indicate that craters

1, 10 (D/d = 3) and 100 (D/d = 5) meters in diameter disappear almost completely
after 107, 108, and 109 years, respectively. Mass movement of eroded material
is thought to accompany the meteoritic erosion process and probably result in an
erosion rate 50 to 100 times greater than erosion due to ejection without downslope
movement. This is believed to be a continuous process and no mention is made of

large slope failures or slumps having been identified by the author.

10




Assuming the maria are at least 2 x 109 years old, it is inferred that
several generations of impact craters of the order of 10 m in diameter have
been effectively removed as topographic features since formation of the maria.
This process would have produced a depositional overlay at least 2 or 3 meters
thick. The total depth of rubble and unconsolidated material is thought by Ross

to be somewhat greater and to vary considerably.

Discussion

Here, as in Jaffe's work, the question arises, from an engineering stand-
point, of the usefulness of determining the thickness of an "overlay" when the
total depth of unconsolidated material remains unknown. It is not clearly stated
either what the significant differences might be in the engineering properties of
these two constituents of the lunar surface or how sharply one could or should

draw a boundary between them.

III. CONCLUSION - FURTHER RESEARCH

Altogether, studies based upon visual observation of lunar craters,
comparison with experimental results, or analytical models have appreciably
narrowed the range of conclusions regarding the lunar surface stratigraphy.

Most of the maria's surface is believed to be overlain by a layer of fine grained,
cohesionless to weakly cohesive fragmented rock whose thickness varies from a
few meters to a few tens of meters, the average being 10 meters. Compressibility
decreases and average grain size increases from the surface down. Rubble is
probably present. Still, this fragmental blanket can be excavated and handled
without the use of explosives except in the vicinity of large craters where large
size blocks, several cubic meters, would be buried. Further research is needed
to determine if excavation and backfilling of this material of limited thickness
would provide adequate meteorite and radiation shielding of structures. Drilling

and construction planning based upon the above conclusions must consider the

* . . . .
For the reader's convenience, salient conclusions of each reviewed work are
summarized in Table I. 11



stability problem; uncased boreholes are unlikely to be stable and medium-height
slopes might have to be rather flat to stand up (embankments, excavation walls, etc.).
Additional research is therefore also suggested in the field of slope stability of
the lunar surface blanket. Beneath it, non-fragmented rock layers are thought to
exist as a result of successive lava floodings. As mentioned by Watkins and
Whitcomb23, ""Near surface lunar rocks may be shattered and broken as a result
of stresses created during formation of large craters'". This will have bearing upon
underground storage projects or sealing off of underground cavities for dwelling
purposes in the event the blanket is too thin to provide adequate shielding.

Previous discussion of techniques applied to lunar stratigraphy determination
leads to the conclusion that for final mission planning, at a given site, extensive
high resolution photographic coverage is mandatory, and the interpretation should

8,9,10 with the other procedures still being too open

rely upon visual observation
to discussion. However, if the required resoltuion for using this technique is not
achieved and if only the gross morphology of craters can be recognized, the method

18,20

developed by Quaide and Oberbeck can then be used for a first estimate.
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